Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe$^{3+}$, Cu$^{2+}$, Zn$^{2+}$, and Hg$^{2+}$, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems.

Biofilms are the dominant form of microbial life on Earth (1), and the organic material that is present in biofilms significantly impacts the cycling and sequestration of toxic heavy metals in the environment (2, 3). The underlying sorption and complexation mechanisms are difficult to evaluate (4), since biofilms are highly dynamic and complex structures that consist of diverse biomacromolecules (5) and the in situ heavy metal distributions are readily influenced by common invasive analysis approaches such as sequential extractions for the determination of different metal fractions. Here, we introduce a promising approach for studying the distribution and sorption of heavy metals in biofilms and cell-extracellular polymeric substance (EPS)-mineral aggregates (CEMAs) under close-to-natural conditions using confocal laser scanning microscopy (CLSM) in combination with highly selective metal ion-sensitive fluorescence probes. This approach is frequently used for metal detection in cell biology but was rarely applied in environmental and geomicrobiology research due to a former lack of highly selective fluorescence probes and due to the complexity of environmental biofilms and CEMAs.

Biofilms are mainly composed of water, microorganisms, and an EPS matrix (6) that consists of mostly polysaccharides and proteins (7). Environmental biofilms are complex and dynamic structures (5) that can create microscale variations of pH and redox conditions. They often contain mineral particles that can either be trapped by (8, 9) or precipitated within (2, 10) the EPS matrix. Biofilms coat most surfaces of minerals, soil aggregates, and sediments in natural aquatic environments (11, 12). Most importantly, functional groups within biofilms play an essential role in metal cycling in the environment, (13); thus, they can act as a sink for toxic heavy metals (14) from geochemical sources and industrial pollution (15). Both organic compounds such as EPS and bacterial cell surfaces (16) and Fe/Mn oxides (17–20) can serve as sorbents and therefore display a variety of sorption/complexation sites that differ regarding their sorption capacities and properties (8) and ultimately can influence the transport and fate of heavy metals in aquatic environments (21).

One of the key goals in the interdisciplinary approaches used by geochemists, environmental microbiologists, and geomicrobiologists is to understand the mechanisms and to predict the impact of metal-microbe interactions in native biofilms (15). A number of different approaches have been used to investigate the heavy metal distribution and sorption capacity, such as sequential extraction and modeling approaches for the study of biofilms under controlled and reproducible conditions (4). It is, however, difficult to derive insights into mechanisms from studying bulk data that are representative of an average of systems that are heterogeneous at the microscale, and thus, imaging approaches that are able to capture the spatial heterogeneity such as microscopic techniques (4, 7, 22–24) combined with image analysis are promising methods. Such spatially resolved studies have been employed in in situ EPS lectin-binding analysis in combination with CLSM, which allowed for the assessment of the glycoconjugate distribution...
tion in fully hydrated, native biofilms (25, 26). Another study used CLSM to study associations of Fe(III) minerals and Fe(III) oxyhydroxides with biofilms in Fe\textsubscript{2}/H\textsubscript{1100} rich solutions (27). In the last decade, there have even been a few attempts at using the fluorescent probes Newport Green and Fluozin-1 for the detection of metals in biofilms. Newport Green and Fluozin-1 are well-established metal fluorescent probes with relatively poor selectivity; Newport Green shows different dissociation constants and thus sensitivities to nickel, cadmium, and zinc, while Fluozin-1 shows different dissociation constants for cadmium and zinc since they have different binding sites. Several studies of hydrated biofilms applying dual labeling of bacterial cells and the respective metals have revealed that Ni, Zn, and Cd show reasonably heterogeneous distributions in biofilms (28–30). In all of these studies, bacterial cell walls bound and enriched metal ions due to cellular sorption. These studies concluded that negatively charged functional groups on the cell walls provide binding sites for heavy metals. In additional to the visualization of labeled metals as at the cell surface by CLSM, the authors concluded from bulk measurement that EPS also sequestered heavy metal ions. This, however, was not demonstrated with CLSM data. Newport Green and Fluozin-1 do not allow for an unambiguous detection of specific target metal species due to their poor selectivity and thus have limited applicability for environmental research.

To further our mechanistic understanding of metal binding in CEMAs and biofilms, novel approaches for mapping the distribution of metal species, cell surfaces, and EPS that are noninvasive, sensitive, and highly specific for the respective metal species are required (4, 31). More than 1,000 different small organic molecule-based metal fluorescent probes have been described since 1997 that allow for quantitative analysis of dissolved metal concentrations and microscopic metal localization in biological samples in combination with CLSM (32–35). However, this has been applied almost exclusively in the field of cell biology. In this review, we focus on specific metal-induced rhodamine spirolactam ring-opening “turn-on”-type fluorescent probes (32, 35–37); we discuss strategies of how to select a metal-specific fluorescent probe for environmental research such as sorption studies of heavy metals in environmental samples such as biofilms and CEMAs to further our understanding of metal sorption under both anoxic and oxic conditions. Since, to our current knowledge, no environmental or geomicrobiology-related applications of such highly selective metal fluorescent probes were published so far, we performed a case study to ensure the applicability of such probes to heterogeneous samples of bacteriogenic CEMAs. We present data of heavy metal sorption to CEMAs formed by the anaerobic, phototrophic Fe(II)-oxidizing bacterium *Rhodobacter ferrooxidans* strain SW2. The materials and methods for the presented experiment can be found in the supplemental material.

WHAT IS A METAL FLUORESCENT PROBE?

Fluorochromes or fluorophores are compounds that absorb visible or UV light and emit fluorescent light of longer wavelengths (38). To date, various fluorophores have been employed as chemosensors for heavy metal ions (HMs), such as xanthenes, including rhodamines (39) and fluoresceins, which are highly favorable because of excellent photophysical properties (i.e., fluorescence intensity and stability) (40) and their biocompatibility. The modified amino groups of the rhodamine moiety (position 3 and 6), the hydroxyl group of fluorescein, the carboxyphenyl ring (position 4'= and 5'), and the carboxylic acid group (position 2') create an active binding site for target metal ions (Fig. 1A) (41). Probes

FIG 1 (A) N-, O-, and S-based moieties bound at the R1 position of rhodamine B/6G form a spirolactam ring and create active binding sites for target metal ions and thus switch off the fluorescence of rhodamine B/6G. Modification of the xanthene moiety at the R2 and R3 positions of the amino groups results in improvement of the photophysical properties of these probes. (B) Target metal cation-induced spirolactam ring-opening and/or low pH each triggers the “turn-on” of the fluorescence of rhodamine derivatives.
that bind metals noncovalently and reversibly are usually called chemosensors, while probes that bind metals covalently and irreversibly are referred to as chemodosimeters (35). Since the differentiation is not of relevance for studies that are in equilibrium over time scales of the microscopy data acquisition (i.e., a maximum of a few hours), we will not differentiate here between the two classifications but rather use the general phrase “metal fluorescent probe” to encompass both types of probes.

Metal fluorescent probes are designed to be highly selective for specific metal ions, yielding detectable fluorescence signal intensity, and hence sensitivity, into the nanomolar range. Dyes with a bimodal emission spectrum have one emission maximum that is sensitive to the target metal and another maximum that is either not sensitive or inversely sensitive. These two maxima are exploited as ratiometric fluorescent probes and achieve low background fluorescence. In a ratiometric approach, the concentrations are also derived from the intensity ratio of the emission peaks, instead of a single peak. These probes are usually well suited for quantitative mapping. Metal fluorescent probes were originally developed for cell biology applications, which aimed at intracellular metal ion labeling, and should also be useful in mapping extracellular heavy metals in environmental samples and laboratory cultures.

In most cases, the change of the emission response of the metal fluorescent probe is based on a chemical reaction between the reactive center of the probe molecule and the metal cation. Most irreversible metal fluorescent probes are highly selective for a specific metal. We therefore distinguish between probes for which a fluorescence enhancement is observed and those in which a fluorescence decrease (quenching) is observed, in the presence of the metal ion. For the so-called “turn-on” probes, the fluorescence enhancement is often accompanied by an emission wavelength shift, which makes them more suitable for CLSM than “turn-off” probes. Most of the metal fluorescent probes steadily fluoresce on the time scale of hours, which is suitable for multiple-labeling CLSM imaging. In summary, many metal fluorescent probes provide useful characteristics for detecting metal cations in biological and biology-related systems (35).

Many bioessential metal-targeted fluorescent probes (e.g., for Zn\(^{2+}\), Fe\(^{3+}\), Cu\(^{2+}\), and Ni\(^{2+}\) [33, 41–47]) have been used to explore neuronal metal homeostasis (46, 48) and metal-related physiological processes (38). Probes targeting toxic metals (e.g., for Pb\(^{2+}\), Hg\(^{2+}\), Cd\(^{2+}\), Ag\(^{+}\), Au\(^{+}\), and Pt\(^{2+}\) [45, 49, 50]) have been used in cellular toxicity studies. We expect that further improvements in probe design (e.g., pH-dependent dual functional probes [51]) will improve the analytical capabilities of CLSM in biological and environmental applications (52).

MECHANISM FOR FLUORESCENCE ENHANCEMENT DURING PROBE-METAL INTERACTIONS

The activity of metal fluorescent probes, i.e., their fluorescence, can be turned on using various mechanisms such as the binding site/signaling approach, the ring-opening of spirocyclic systems (44, 47), the intramolecular cyclic guanylation of thiourea derivatives (53), mild chemical processes such as ion-induced desulfurization (deselenation) followed by hydrolysis, desulfurization (deiodination) followed by cyclization, deprotection, ester hydrolysis, Schiff-base hydrolysis and hydrazide hydrolysis, photoinduced electron transfer (PET), and intermolecular charge transfer (ICT) (54, 55). However, in most cases, the mechanism of spirocyclization is used to activate or to deactivate fluorescence in real time (33). We therefore explain this ring-opening mechanism in brief.

Rhodamine-based molecules with spirolactam structures as a fluorescence trigger (56) are widely used for metal-selective fluorescence probes owing to their almost ideal fluorescence properties. Modifications of rhodamine (e.g., replacing the nitrogen atoms of the xanthene moiety by a urea group and a trimethyl group [57]) facilitate its linkage to a target molecule (58, 59) and also influence the selectivity toward the target metal ion through electronic or steric hindrance effect (60). Rhodamine spirolactam or spirolacton derivatives are nonfluorescent and colorless, whereas metal-induced ring-opening of the corresponding spirolactam/-lacton at neutral pH and/or ring opening of spirolactam/-lacton at low pH values due to protonation of the carbonyl group both could give rise to strong fluorescence emission and a pink color. N-, O-, and S-based groups at the R1 position of rhodamine provide a specific, active binding site for metal ions (Fig. 1A), which can promote a specific metal cation-induced spirolactam ring-opening (Fig. 1B) (35, 61), even through this process is somewhat dependent on the solvent (40, 44). In most cases, the selectivity of the spirolactam-based probes is sufficient to easily discriminate, e.g., other (divalent) cations from the target metal ion by several orders of magnitude in terms of fluorescence intensity enhancement (e.g., for Cu\(^{2+}\) probe, see Fig. 4 and 6 in reference 62, and for Hg\(^{2+}\) probe, see Fig. 10 in reference 63). These metal fluorescent probes are currently not yet commercially available. However, interested researchers can contact the authors for more information.

SELECTION OF A METAL-SELECTIVE “TURN-ON” FLUORESCENT PROBE

The successful mapping of HMs by CLSM requires the selection of a probe with high sensitivity under the experimental conditions. Some parameters to consider during probe selection are the following.

(i) *Is the target metal ion located extra- or intracellularly?* Many metal ions are essential elements for all living organisms, required for the reactive centers of enzymes, but the required concentrations of these metal ions are generally quite low (i.e., nanomolar levels) (64, 65). As a result, intracellular HM concentrations might still be in the nanomolar range even if concentrations in the extracellular environment are higher by many orders of magnitude.

(ii) *What are the Eh/pH conditions of the experiment?* The pH, ionic composition, and redox state of intracellular versus extracellular environments may differ due to cells generating microgradients that facilitate uptake of nutrients or enhance metabolic energy efficiency (i.e., a proton pump). The effect of pH on metal solubility is difficult to distinguish from other autocorrelated parameters such as the protonation of sorption sites and the binding properties of the fluorescent probe. Thus, it is important to verify that the probe covers the respective concentration range of the HM species of interest, under the conditions that occur within the sample. Since it has the most influence on chemical speciation (66), pH can diminish the sensitivity of a particular fluorescent probe. Besides pH, the speciation of HMs can be controlled by the redox conditions in the sample. Thus, it might be necessary to identify the redox conditions and quantify the abundance of all relevant HM species under the pH/redox conditions observed in
the sample (e.g., by thermodynamic modeling approaches or \(E_h \) measurements) (67, 68).

(iii) What is the concentration of the target metal ion? Dissolved concentrations of most essential target metal ions in microbial culture medium range from 10 to 800 nM (64, 65), whereas concentrations found in the environment can vary by many orders of magnitude. The fluorescent probe might not be sensitive to all metal species in a single sample (e.g., metal ions sorbed to mineral surfaces or complexed by organic ligands), which should be verified in separate control experiments with the target metal ion and the mineral and the target ion and the organics when interpreting the measured distribution pattern. Often, metal ions are enriched within microenvironments due to sorption or complexation. The enrichment factors depend on the surface properties and functional groups of the organic sorbent. Some metal species preferentially bind to functional groups of organic matter, whereas others are preferentially sorbed to/coprecipitated with mineral phases.

(iv) How sensitive is the target metal ion to fluorescent probe disturbance? The addition of the fluorescent probe may alter the distribution, mobility, and bioavailability and thus the function of the target metal ions. Potential effects depend on the probe’s solubility, which affects the upper limit of the detection range, and the dissociation constant of the dye-metal complex, which might reduce metal availability more or less strongly for higher or lower concentrations, respectively. Additional artifacts of fluorescence staining might be caused by interactions of the fluorescent probe with the cells, i.e., biotoxicity effects, or from inhomogeneous distribution of the probe in heterogeneous samples; the latter can be overcome by using ratiometric probes.

(v) What type of probe will be used? For qualitative and (semi-) quantitative HM mapping, almost all highly metal-selective and -sensitive, rhodamine-based “turn-on” fluorescent probes can be utilized for CLSM imaging. For quantitative mapping, ratiometric probes which can minimize background fluorescence are preferred (69) due to their higher precision and selectivity and lower interference with other nontarget metals.

The selected fluorescent probe should have the necessary sensitivity, and the resulting fluorescence signal should be stable. The fluorescent probe should clearly discriminate the target metal species from other metal species that are present in the system (29). In particular, for environmental studies where solutions can contain multiple ions at significantly different concentration ranges, a lack of the required selectivity has been a major disadvantage of many conventional and commercially available metal fluorescent probes. Additionally, the selected fluorescent probe should have a strong fluorescence enhancement within a few minutes, essential for multiple labeling or time-lapse CLSM. The fluorescent probe should not be saturated at the concentration of the target metal present in the sample. Furthermore, the probe should function at a broad concentration range for metal semiquantitative detection with good linearity. The fluorescent probe should be water soluble, should have a low toxicity to cell metabolism, and should be environmentally friendly. Finally, depending on the available CLSM instrumentation, often visible-light excitation and emission are preferred since instruments in this wavelength range are readily available. The basic principles of selection criteria for fluorescent probes were described efficiently by Czarnik in 1998: “meets all the demands of the application—no more, no less” (70).

SPECIFIC METAL FLUORESCENT PROBES

In the following, we summarize relevant examples that illustrate the performance of selected metal fluorescent probes (\(\text{Fe}^{3+}, \text{Cu}^{2+}, \text{Zn}^{2+}, \text{and Hg}^{2+} \)) for environmental samples, their different sorption properties, and their different toxicities. Almost all metal fluorescent probes discussed here in detail can be used in combination with a “basic” CLSM equipped with multiple lasers.

Fe\(^{3+}\) fluorescent probes. Iron is a redox-active, bioessential metal. The majority of intracellular biologically bound iron is tightly bound by enzymes (48). We selected four Fe\(^{3+}\) fluorescent probes from more than 100 recently reported articles (Table 1) based on the criteria described above. Their excitation and emission spectrum is almost always based on a rhodamine B backbone, which is readily excited with commonly available lasers. The emission peaks are around 570 to 595 nm, so these probes combine well with other commercially available fluorescent dyes that bind to DNA (such as Syto dyes) and polysaccharides (such as lectin-Alexa Fluor conjugates), i.e., they have nonoverlapping emission maxima. Using multiple dyes for these sample components facilitates correlation analysis, e.g., the colocalization of Fe\(^{3+}\) ions to microbial cells and/or EPS. In addition, all of these selected Fe\(^{3+}\) fluorescent probes show a high selectivity and result in no significant background fluorescence with other, mono- or bivalent cations. Thus, they can be used in solutions such as culture media for environmentally relevant bacteria, which contain many metals (e.g., Na\(^{+}, \text{K}^{+}, \text{Ca}^{2+}, \text{Cd}^{2+}, \text{Mg}^{2+}, \text{Co}^{2+}, \text{Mn}^{2+}, \text{Zn}^{2+}, \text{Ni}^{2+}, \text{Hg}^{2+}, \text{Cu}^{2+}, \text{and Fe}^{2+})\). All of these probes are sensitive to micromolar Fe\(^{3+}\) levels (detection range, 1 to 100 \(\mu\)M), and some show an excellent linearity within certain concentration ranges. In addition, all of these probes show a “turn-on” response to Fe\(^{3+}\) and are therefore easier to use in a (semi-)quantitative way.

Cu\(^{2+}\) fluorescent probes. Copper is an essential element for all living organisms, but it is toxic when micromolar levels are exceeded (48). More than 220 Cu\(^{2+}\) fluorescent probes have been reported during the last 15 years. The design of the first Cu\(^{2+}\) fluorescent probe was reported in 1997 (71, 72), and it was also the first reported metal fluorescent probe. Most Cu\(^{2+}\) probes show excitation and emission characteristics similar to those of Fe\(^{3+}\) probes, and their detection ranges vary from 0.002 \(\mu\)M to 60 \(\mu\)M Cu\(^{2+}\). All of the selected Cu\(^{2+}\) fluorescent probes show high selectivity over other essential metals such as Na\(^{+}, \text{K}^{+}, \text{Ca}^{2+}, \text{Cd}^{2+}, \text{Mg}^{2+}, \text{Co}^{2+}, \text{Mn}^{2+}, \text{Zn}^{2+}, \text{Ni}^{2+}, \text{Hg}^{2+}, \text{Cu}^{2+}, \text{and Fe}^{2+}\). Probes 1 and 2 (Table 1) show different spectral properties compared to most Fe\(^{3+}\) fluorescent probes, with emission peaks between 540 and 560 nm. This spectral range not only allows their use in combination with other dyes to analyze the correlation of Cu\(^{2+}\) with cells and EPS but also provides the possibility of multimetal labeling in combination with other metal-sensitive probes such as Fe\(^{3+}\) probes to analyze the correlation of Cu\(^{2+}\) with Fe\(^{3+}\).

Zn\(^{2+}\) fluorescent probes. Similar to iron and copper, zinc is also an essential nutrient to all forms of life and exists mostly in its divalent form within biological environments (48). We screened 200 Zn\(^{2+}\) probes and selected 4 candidates for environmental research. Probes 1 and 4 (Table 1) are excited with visible laser wavelengths and displayed emission maxima around 570 to 590 nm, whereas probe 3 emits maximally at 510 to 520 nm. The latter again can be used, e.g., in combination with Fe\(^{3+}\) probes. The ratiometric probe 2 can be used for subquantitative and quantitative mapping.
<table>
<thead>
<tr>
<th>Target and probe no.</th>
<th>Chemical structure</th>
<th>Ex (nm)</th>
<th>Em (nm)</th>
<th>DL (µM)</th>
<th>DR (µM)</th>
<th>Solvent</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe³⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>530</td>
<td>580</td>
<td>1</td>
<td>0–20</td>
<td>MeOH</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>561</td>
<td>583</td>
<td>0.11</td>
<td>1–100</td>
<td>Tris-HCl</td>
<td>89</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>558</td>
<td>580</td>
<td>5</td>
<td>5–20</td>
<td>MeOH</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>570</td>
<td>593</td>
<td>0.004</td>
<td>0.5–50</td>
<td>Tris-HCl</td>
<td>91</td>
</tr>
<tr>
<td>Cu²⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>480</td>
<td>554</td>
<td>0.002</td>
<td>0–0.005</td>
<td>CH₂CN</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>520</td>
<td>545</td>
<td>0.04</td>
<td>0.5–1</td>
<td>PBS</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>510</td>
<td>580</td>
<td>0.16</td>
<td>0.08–2.5</td>
<td>CH₂CN</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>555</td>
<td>587</td>
<td>0.005</td>
<td>0–60</td>
<td>CH₂CN</td>
<td>94</td>
</tr>
<tr>
<td>Zn²⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>550</td>
<td>595</td>
<td>0–1,800</td>
<td></td>
<td>PIPES</td>
<td>95</td>
</tr>
</tbody>
</table>
The detection ranges of the Zn$^{2+}$/H$_{11001}$ probes vary from submicromolar concentrations to 50 μM. The Zn$^{2+}$/H$_{11001}$ probes are quite selective and only little affected by the presence of additional metal ions. Compared to Fe$^{3+}$, Cu$^{2+}$, and Zn$^{2+}$/H$_{11001}$, the Hg$^{2+}$/H$_{11545}$ ion is one of the most critical environmental contaminants because of its extreme toxicity. Mercury is a persistent contaminant, which bioaccumulates in ecosystems (73). Four Hg$^{2+}$/H$_{11001}$ probes were selected for illustrating the possibility for Hg$^{2+}$/H$_{11001}$ mapping. Although reported Hg$^{2+}$/H$_{11001}$ probes have been reviewed before (35, 73), these reviews did not focus on environmental applications. Probes 3 and 4 are excited with common solid-state or gas lasers in the visible light range and emit around 570 to 590 nm (Table 1). Again, this makes them suitable for combining with other fluorochromes to analyze correlations of Hg$^{2+}$/H$_{11001}$ to cellular components and EPS. Probe 1 shows an emission peak at 537 nm and can be combined with Fe$^{3+}$/H$_{11001}$ probes to analyze the correlation of Hg$^{2+}$/H$_{11001}$ with Fe$^{3+}$/H$_{11001}$. Additionally, the ratiometric probe 2 can be used for subquantitative and quantitative mapping. The relatively high selectivity mitigates interference from additional ions.

APPLICATIONS

In contrast to scanning electron microscopy (SEM) or transmission electron microscopy (TEM), where even the most careful specimen preparation cannot prevent artifacts (74, 75), CLSM and scanning transmission X-ray microscopy (STXM) are powerful tools for in situ quantitative or semiquantitative analysis of...
environmental samples such as biofilms in their hydrated state (24, 76, 77). These techniques yield reliable information on biofilm structure (78, 79), chemical composition (24, 80), and heavy metal adsorption (24, 28). Moreover, CLSM can be used to explore dynamic microbial population change (24, 81) and mass transport in biofilm systems (78). Another advantage of CLSM over STXM is the accessibility.

Since no examples for the application of these highly selective, metal-specific fluorescent probes in environmental sciences have been published, in this review, we demonstrate the application of the above-described probes to study and to visualize metal distributions in CEMAs formed by Fe(II)-oxidizing bacteria. We are particularly interested in the influence of microbial Fe(II) oxidation on the distribution and fate of Fe^{3+}, Cu^{2+}, Zn^{2+}, and Hg^{2+} in these samples. The distribution and fate of HMs can be influenced by the stress response of the bacteria to toxic metal concentrations, resulting, e.g., in an enhanced production of EPS as a protection mechanism (82, 83). The metals are redox sensitive, and their distribution might be different between their natural hydrated state and dry samples. Thus, CLSM is one of very few suitable techniques that allow for mapping the metals in their natural, hydrated, and anoxic state.

A case study: Fe(II)-oxidizing bacterial-mineral aggregates. In the example, we sought to determine the HM distribution patterns between bacterial cells, EPS, and mineral phases in CEMAs formed by Fe(II)-oxidizing bacteria under anoxic conditions. Figure 2 shows the results of a fluorescent probe-based multilabel CLSM approach that we used to visualize and measure the distribution of metal ion cells and EPS in CEMAs formed by the anaerobic phototrophic Fe(II)-oxidizing bacterium *Rhodobacter ferrooxidans* strain SW2 (84).

The individually added toxic metal ions (i.e., Cu^{2+}, Zn^{2+}, Cd^{2+}, and Hg^{2+}) were each found to be mostly enriched in the EPS-rich matrix of the CEMAs. Fe^{3+} ions were complexed and sorbed by functional groups on the cells’ surfaces and within the EPS that derived from microbial Fe(II) oxidation. The local correlation between sorbed Fe^{3+} and other heavy metal ions thus indicates a potential competition of a fraction of the sorption sites in the EPS between Fe^{3+} and the other metal ions, whereas other sites in the EPS seemed to preferentially bind one of the metal ions over the other. In principle, Fe(III) minerals and Fe(III) oxyhydroxides can provide additional binding sites for metal ions, but most likely steric effects in combination with low concentrations of Fe(III) minerals and Fe(III) oxyhydroxide-bound metal ions result in no significant fluorescence increase in the case of Fe(III) minerals and Fe(III) oxyhydroxide-bound metals.

CONCLUSION AND OUTLOOK

Reliable multicolor labeling CLSM approaches are currently under development, including combinations such as DNA/protein-
Me2+-EPS, or different metal ion multiple labeling, i.e., Fe3+-Cu2+/Zn2+/Ni2+/Cd2+/Hg2+. To confirm the distribution patterns observed by CLSM, it will be necessary to compare the results with distribution patterns obtained by other conventional methods such as scanning electron microscopy (SEM)/transmission electron microscopy (TEM) in combination with energy-dispersive X-ray spectroscopy (EDX), or with STXM, which also allows for analyzing hydrated samples. Further developments and testing are required in particular for tracking microbial Fe(II) oxidation. The success of this approach is heavily dependent on the design and development of highly sensitive and selective Fe3+ and Fe2+ fluorescent probes that can be synthesized more efficiently. In particular, the Fe2+ fluorescent probe design is still a great challenge, and due to the difficult chemical synthesis, only a few probes have been reported so far (85, 86). However, dual-functional iron fluorescent probes, which can be used for Fe2+ and Fe3+ in combination with chemical agents such as H\textsubscript{2}O\textsubscript{2} (87), or depending on pH, have been successfully applied in biological sample imaging (51). More sophisticated approaches such as mapping several metals simultaneously, studying adsorption/desorption processes, simultaneously detecting dynamic changes of intracellular/extracellular and extracellular metals, and the correlational analysis of metal-cell/metal-EPS systems, all depend on further high-quality, purpose-oriented fluorescent probe development.

In summary, the development of CLSM-compatible metal fluorescent probes for use in three-dimensional (3D) and quantitative analytical microscopy is a great challenge to both microscopists and chemists, which demands further discussion, exchange, and extensive collaboration between these two fields. The advantage of being able to analyze samples in their natural hydrated state with a readily available microscopy approach, however, will be a driving force that helps to create new methods for studying the fate of heavy metals in the environment. Spatially resolved correlation analysis and the combination of the multilabeling CLSM approach with other analytical microscopy techniques such as STXM might help to better characterize or even identify the sorption sites with general or specific binding characteristics, respectively. Since the spatial resolution in conventional CLSM is limited in comparison to other approaches, such as electron microscopy, applications of super-high-resolution optical microscopy techniques such as structured illumination microscopy might help to overcome these limitations if metal fluorescent probes that are compatible with these techniques can be developed.

ACKNOWLEDGMENTS

We thank E. D. Swanner, J. Byrne, Z. Yang, F. Zeitvogel, X. Jin, P. Ingino, G. Schmid, E. Struve, W. Wu, and the geobiomicrobiology group in Tuebingen for their support. We also thank Z. Zeng (LZU), F. Li (FDU), Y. Xu (ECUST), and J. Liu (Heliosense) for providing high-quality metal probes.

This project was funded by the DFG Emmy-Noether program to M.O. (OB 362/1-1) and the NSF of China (grants 20972124, 21103137, and 21272184).

REFERENCES

transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy, ISME J. 2:121–131.

Andreas Kappler has held his current position as Professor of Geomicrobiology at Eberhard Karls University of Tuebingen since 2008. He received his diploma in chemistry and his Ph.D. in environmental microbiology and microbial ecology at the University of Konstanz in Germany in 2000. After a postdoc at EAWAG/ETH in Zürich in environmental chemistry and a postdoc at Caltech in geobiology, he moved to Tübingen in 2004 to head an Emmy-Noether junior research group in geomicrobiology before being appointed Professor of Geomicrobiology. His research focuses on the formation and transformation of iron minerals by Fe(II)-oxidizing and Fe(III)-reducing bacteria and the implications of these processes for the fate of pollutants in soils and sediments as well as for the deposition of iron minerals on early Earth. His research combines microbial cultivation, molecular biology, fluorescence and electron microscopy, Mössbauer spectroscopy, and synchrotron-based X-ray absorption spectroscopy.

Martin Obst is the head of the Emmy-Noether junior research group “Environmental Analytical Microscopy” at the Eberhard Karls University of Tuebingen. He received his Ph.D. in geomicrobiology in the group of Prof. Bernhard Wehrli from the Swiss Federal Institute of Technology, Zurich, Switzerland/Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland. During his Ph.D., he gained expertise in electron and atomic force microscopy. He followed up this experience with a 2.5-year postdoctoral fellowship at the scanning transmission X-ray microscopy beamline at the Canadian Light Source. His current research interests are using analytical microscopy to study the distribution, mobility, and bioavailability of toxic trace metals and other contaminants in the environment.